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optimisation in micellar electrokinetic chromatography

a ,1 b b b ,*Josef Havel , Michael Breadmore , Miroslav Macka , Paul R. Haddad
aDepartment of Analytical Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic

bSchool of Chemistry, University of Tasmania, GPO Box 252-75, Hobart 7001, Tasmania, Australia

Abstract

The separation process in capillary micellar electrochromatography (MEKC) can be modelled using artificial neural
networks (ANNs) and optimisation of MEKC methods can be facilitated by combining ANNs with experimental design.
ANNs have shown attractive possibilities for non-linear modelling of response surfaces in MEKC and it was demonstrated
that by combining ANN modelling with experimental design, the number of experiments necessary to search and find
optimal separation conditions can be reduced significantly. A new general approach for computer-aided optimisation in
MEKC has been proposed which, because of its general validity, can also be applied in other separation techniques.
 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction because there are many parameters that are known to
influence the migration process and the mathematical

In micellar electrokinetic chromatography description of these parameters can be quite com-
(MEKC), a surfactant is added to the mobile phase plex. Various ‘‘hard’’ (i.e., physico-chemical) models
and the resultant micelles act as a pseudo stationary for MEKC have been examined recently [3–10]. If
phase. The technique was developed by Terabe et al. an appropriate model is chosen from those available,
[1]. MEKC is used for a great variety of analytes, computer optimisation of composition of the back-
particularly neutral compounds where the high ef- ground electrolyte can be performed and/or the
ficiency of capillary electrophoresis (CE) separations migration behaviour of analytes can be predicted. In
can be applied. Recently, an extensive review on the spite of the demonstrated success of this approach,
separation of metal ions and metal-containing species the process can be very laborious if many parameters
by MEKC, including utilisation of metal ions in the are involved because numerous experimental points
separation of other species, has been published by are then necessary to derive the parameters of the
Haddad et al. [2]. model.

The explanation of migration behaviour in MEKC Over the last decade, increased attention has been
and the optimisation of separation is often difficult paid to the applications of ‘‘soft’’ models in chemis-

try. Soft models can be defined as approaches in
which an explicit mathematical model is neither*Corresponding author. Fax: 161-3-6226-2858.
formulated nor used. The prime example of such anE-mail address: paul.haddad@utas.edu.au (P.R. Haddad)
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(ANNs). ANNs can be applied to various problems mulae, mathematical equations and the knowledge or
in chemistry as reviewed recently [11,12] and to determination of the values of physico-chemical
process different chemical information using associa- constants on which these equations are based, ‘‘soft’’
tion, classification, mapping, modelling, etc. In sepa- models (such as ANNs) consist only of arrays of
ration science, ANNs have already been used in CE simple activation units linked by weighted connect-
[13,14] and for the optimisation of chiral separations ions. The basic processing unit in an ANN is called a
[12,15]. A survey of the various approaches to node or a simulated neuron [26]. A complete ANN is
optimisation of CE can be found in a recent review composed of multiple layers of neurons arranged so
[16]. that each neuron in one layer is connected with each

¨Buterhorn and Pyell [17] published a computer- one in the next layer.
aided optimisation of resolution in MEKC but nei- In this work, multilayered feedforward neural
ther a hard model nor an empirical model (equation) networks were used, which employed the algorithm
was used. ANNs have been applied for peak tracking of backpropagation (BP) of errors and the general-
in high-performance liquid chromatography (HPLC) ised ‘‘delta rule’’ [16,17] for the adjustment of the
optimisation [18], response surface modelling in connection weights (further called BP networks). BP
HPLC optimisation [19], assessment of chromato- networks comprise one input layer, one (or possibly
graphic peak purity [20], or for deconvolution of several) hidden layer(s) and an output layer (see Fig.
overlapping peaks [21]. Marengo et al. [22] studied 1). The number of nodes in the input and output
the possibility of using ANNs to investigate the layers are defined by the complexity of the problem
effect of five factors in ion-interaction chromatog- being solved. The input layer receives the ex-
raphy and Sacchero et al. [23] have made a com- perimental information [e.g., pH, concentration of
parison of the prediction power between theoretical the background electrolyte (BGE) components, etc.]
and neural-network models in ion-interaction chro- and the output layer contains the response sought, for
matography. However, only in some publications example the migration times, resolution of a defined
[13–15] have attempts to achieve optimisation been peak pair, overall resolution, etc. The hidden layer
performed, with ANNs normally being used only for encodes the information obtained from the input
modelling purposes. Recently, an extensive use of layer, and delivers it to the output layer.
ANNs for modelling in ion chromatography has been The number of nodes in the hidden layer may be
presented [24]. The use of the combination of ANN considered as an adjustable parameter [16]. Each
and experimental design for optimisation has been neuron thus has a series of weighted inputs, w ,ij

first proposed in CE by Havel and co-workers which may be either output from other neurons or
[14,15,22]. Marengo et al. [22] also used ANNs and input from external sources. Each neuron calculates a
experimental design but only for decreasing the sum of the weighted inputs and transforms it by a
number of experiments for modelling purposes. transfer function,
Applications of experimental designs in CE have 1
been recently reviewed by Altria et al. [25]. ]]]d 5 (1)j (12x)

]]In this work the aims were to examine the g1 1 e
modelling capabilities of the soft model-ANN ap-

where d is the output from the jth neuron connectedproach in MEKC, with comparison to hard models,
to ith neuron in the previous layer and g is the gainand the use of ANNs in combination with suitable
determining the slope of the sigmoid transfer func-experimental designs to facilitate the optimisation
tion, and x is given byand/or prediction of electrophoretic mobilities in

nMEKC.
x 5Ow o 1u (2)ij i j

i51

2. Theory
where w represents the weight applied to theij

connection from ith to jth neuron, o is the outputi2.1. Theory of ANNs
from the ith neuron in the previous layer and u is aj

While ‘‘hard’’ models in chemistry require for- bias term.
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Fig. 1. ANN structure for the prediction of observed mobilities of seven metal–HEDTC complexes from two inputs (C and [SDS]) andMeOH

seven neurons in the hidden layer.

BP networks operate in a supervised learning designs in which each factor is investigated at
mode. In the first step called the ‘‘training phase’’, several levels, the most common being a two-level
known data are given to the network (a series of factorial design, characterised by the orthogonality of
experiments coupling parameters and response val- the factors. In this work we mainly used a two-level

nues constituting the learning set). Using the BP factorial design, which requires 2 experiments,
algorithm connection weights w are iteratively (where n is the number of factors being investigated)ij

adjusted until the output values equal or are in- with the addition of a central point to cover the
significantly different to the experimental values. possibility of non-linearity.
This adjustment is carried out by minimising re-
siduals (t 2o ), i.e., the difference between theij ij

calculated (target t ) and desired output (o ) values 3. Data description and computationij i

and searching for the minimum of the total sum of
squares (TSS) of the deviation (t 2o ) for the n The PDP ANN computational package [17] wasij ij

patterns of the learning set (Eq. (3)); used in this work with processing being performed
on a Pentium-PC compatible computer. BP networks

n
2 having three layers were created with this programTSS 5O(t 2 o ) 5 min (3)ij ij and optimisation of the parameters for the networksi51

was then carried out by systematically varying the
2.2. Experimental designs values of the parameters until the ‘‘best’’ network

performance was achieved.
Experiments for determination of the optimal Different data sets were used to study the applica-

conditions for separations should be made according tions of ANNs to the prediction of the best ex-
to a suitable experimental design. These have been perimental conditions for MEKC separations. Re-
described elsewhere [26,27] and we will only sum- cently, Breadmore et al. [3] derived and validated a
marise briefly here what will be applied in this work. hard model to describe and predict the observed
The basic experimental designs are full factorial mobilities of anionic metal complexes, when two
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electrolyte parameters (concentration of methanol compared to those of hard models reported for each
and surfactant) were varied. Complexes formed case by Breadmore et al. [3]. Training and general
using two ligands were examined, bis(2-hydroxy- application of the ANN will be considered using the
ethyl)dithiocarbamate (HEDTC) and trans-1,2- slightly anionic complexes of HEDTC, with the
diamino-N,N,N9,N9-cyclohexanetetraacetic acid more significantly charged complexes of CDTA then
(CDTA). These same data will be examined for use being used to apply the ANN procedures.
with ANNs.

For ANN modelling, the observed mobilities of 4.1. ANN modelling of migration behaviour of
several metals were considered, in addition to the selected metal complexes in MEKC
resolution between two metal complexes and also the
overall normalised resolution product [28] of the The first step is to search for the architecture of
entire separation. The effects of adjustable parame- the ANN which enables sufficiently accurate model-
ters (scaling of the data, momentum, learning weight, ling of the migration behaviour of the metal com-
number of hidden nodes and the number of learning plexes in micellar solutions, that is, to model the
cycles) were also studied. Momentum and adaptive response surface, m 5f([SDS], C ), where mob MeOH ob

learning rate were used in order to improve the is the observed mobility of the metal complex, [SDS]
performance, whereby the momentum prevents sud- is the molar concentration of SDS and C is theMeOH

den changes in the direction by taking into account concentration of methanol (%, v /v) in the BGE.
the preceding correction of the weights. However, From the wide range of metal complexes for which
this lowers the sensitivity of the neural network to data are available [3], we have quite arbitrary
small details in the error surface. The adaptive selected Ni(II)– and Cu(II)–HEDTC complexes.
learning rate attempts to keep the learning step-size The data for these complexes consisted of pairs of
as large as possible, such that the process keeps input ([SDS] and C ) and one output value (theMeOH

converging. The use of an adaptive learning rate observed mobility), Table 1. Different ANN struc-
leads to a lower training time, but if it is set too high, tures with various numbers of neurons in one hidden
the error in prediction soon starts to oscillate or layer were constructed and after the training phase
increase. Further details of the process can be found (using seven experimental points) the quality of the
in previous communications in this field fit examined using the entire 50 data points collected
[13,15,17,24]. for each metal. This process showed that a simple

ANN with one hidden layer was sufficient. The
lowest necessary number of hidden nodes was then

4. Results and discussion determined systematically in order to avoid problems
with ‘‘overtraining’’ [24].

The use ANNs for modelling in MEKC will be The results of such a search for the two metal
examined for several previously studied cases and complexes of Ni(II) and Cu(II) are given in Table 2
the results of the ANN modelling approach will be which shows that for n$4–5 the TSS value is

Table 1
aSelected points from ANN application (2.7.7) to the observed mobilities of Ni(II)–HEDTC complex

C [SDS] m (ANN) m (Exp) ErrorMeOH ob ob
29 2 29 2(%, v /v) (mM) (10 m /V s) (10 m /V s) (%)

2 20 20.76 19.90 4.13
6 30 20.01 21.80 8.98

10 10 7.49 8.70 16.11
12 10 6.90 7.60 10.07
12 30 15.83 16.40 3.63
14 20 10.12 10.00 1.47
16 10 5.02 5.20 3.64

a Only seven were used for ANN training. Total number of points551. Average error55.67%, maximum error516.11%.
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Table 2 4.2. ANN modelling of the migration behaviour of
Change in TSS for Cu(II)– and Ni(II)–HEDTC complexes with several metal complexes in MEKC simultaneously
increasing number of hidden neurons in the hidden layer

No. of hidden neurons TSS for Cu(II) TSS for Ni(II) The results obtained above demonstrate the model-
(?10 000) (?10 000) ling power of ANN for a single metal complex and

1 38.63 29.80 provided encouragement to examine the modelling of
2 38.62 29.40 all metal complexes simultaneously. Investigation of
3 5.40 5.21

several ANN architectures showed that excellent4 3.30 5.08
agreement could be obtained using a (2,7,7) neural5 3.36 4.82

6 3.00 5.10 network. Fig. 1 shows the architecture used, and
7 3.41 3.72 Table 1 shows selected data and Fig. 2 shows the
8 3.33 3.30 response surface for the Ni(II)–HEDTC complex

12 1.80 3.18
over the defined area with the solid points represent-
ing the experimentally observed mobilities of the
complex at these points. The surface was constructed

almost constant. Surprisingly, the overtraining (in- via ANN modelling using a training set of seven
crease of TSS, unconvergence or oscillations) was points and then predicting intermediate points.
not observed up to n512. It can be concluded that The quality of the fit between experimental and
for the case studied, migration behaviour for a single predicted mobilities obtained with ANN modelling
metal complex can be modelled with sufficient can be visualised in Fig. 2 which shows acceptable
accuracy (TSS55% rel.) using a (2,n,1) architecture, scattering of the experimental points from the ANN
where n54–12. constructed surface. A more quantitative assessment

Fig. 2. Response surface for the observed mobility of the Ni(II)–HEDTC complex predicted from training of the ANN (2,7,1) using seven
data points. Solid points are experimental values.
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of the ability of the ANN to predict mobilities can be The observed mobilities and resolution between
obtained by calculating the value of TSS. Moreover, the components of two pairs of metal complexes
the performance of the ANN can be compared to that [Bi(III) and Ni(II), and Pb(II) and Hg(II)] were
of the hard model by again calculating TSS using the modelled using an ANN design of (2,7,3). Excellent
data obtained previously [3]. The values for TSS for agreement with experimental data was obtained,
all seven metal HEDTC complexes for all conditions which is a significant achievement considering the

6 6were 89.6?10 for the (2,7,7) ANN and 65.2?10 for selectivity change that occurs between Ni(II) and
the hard model, which indicates a slightly better fit to Bi(III) over the BGE compositions studied (see Ref.
the data using the hard model. However it is also [3] for a full discussion).
important to recognise the versatility of the ANN The ability to accurately predict electrophoretic
approach. Using the hard model, specific information mobilities and resolution between two metal–
such as the mobility of the micelles at particular HEDTC complexes allows us to consider using an
conditions, the value of the critical micelle con- ANN in optimising the much more complex overall
centration (CMC) and how the CMC changes with resolution of the separation for all seven metal
increasing concentrations of methanol were required complexes. The overall quality of the separation was
before any predictions could be made. Furthermore, judged by calculating the normalised resolution
the knowledge that the complexes were very slightly product, r [28]. Since values of r lie between 0 and
charged and thus had their own electrophoretic 1, normalisation of the data was initially not per-
mobility which would influence the separation was formed. After training the ANN, it was found that for
required. Using the ANN approach, none of this values of r,0.1, agreement was very poor. Upon
information was required before fitting the data. normalisation of the data, the TSS dropped by a
Further, the hard model can only be applied to one factor of 10, giving a better overall fit for all of the
metal complex at a time since some of the parame- data.
ters used in the model are specific to each complex A similar process to that used to determine the
and simultaneous optimisation requires significant required number of hidden neurons for modelling the
computation time far exceeding that used in the observed mobility of the Ni(II) and Cu(II), was
ANN approach. performed for the normalised resolution product. The

As ANNs can be successfully used to predict best ANN structure was determined to be (2,12,1)
observed mobilities it is straightforward to use ANNs but it should be noted, as before, no overtraining was
to predict mobilities and to therefore calculate res- observed even when more than 20 hidden nodes
olution or some other parameter that can be used in were used.
optimisation strategies. A more interesting and de-
manding alternative is to examine the viability of 4.4. Prediction of resolution using experimental
using ANNs to directly model the desired parameter design and ANN modelling of overall resolution in
that is to be optimised. MEKC

Successful modelling of migration behaviour and
4.3. ANN modelling of resolution behaviour of resolution makes it possible to use ANNs for method
pairs of metal complexes and overall resolution in optimisation. This possibility was first examined
MEKC using the HEDTC complexes and then applied to a

second group of complexes, namely those with
Perhaps one of the simplest criterion for optimi- CDTA as the ligand.

sation is the resolution between a given two peaks. In using ANNs to find the optimum conditions,
Resolution between two peaks 1 and 2 is defined two methods were considered. The first involved
according to Eq. (4): finding the optimum separation conditions within a

two-level factorial design with a central point (mak-
m 2 m ing five experimental points) covering the entire1 2
]]]R 5 (4)1,2 m 1 m experimental area, that is, between 10–30 mM SDS1 2
]]]

and 0–20% (v/v) methanol. Using the normalised2
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resolution product as the criterion for evaluating the
separation, an ANN structure of (2,12,1) was applied
to the five data points defined by the experimental
design. Values of r were then predicted over the
entire space in intervals of 1 mM SDS and 1% (v/v)
methanol. Using this design, the predicted optimum
separation conditions were at 8% (v/v) methanol and
10 mM SDS. Retraining of the ANN using the
experimental data obtained under these conditions
gave a new optimum of 0% (v/v) methanol and 10
mM SDS. After retraining with this point (making a
total of seven experiments), the optimum was estab-
lished at 8% (v/v) methanol and 10 mM SDS, which
are the same optimal conditions identified in the hard
modelling approach [3].

The second approach used a smaller two-level
factorial design that did not contain the global
optimum. It was found that the starting points
selected and the points used for retraining the ANN
produced significantly different conditions for the
optimum conditions. The area was defined between
12–20% (v/v) methanol and 10–30 mM SDS. This
area contains several local maxima for the response
criterion (r), but not the global maximum determined
above (8%, v/v, methanol and 10 mM SDS). The
first attempt to find the optimum involved training
the ANN with five points (points 1–5 in Fig. 3a), and
gave point 6 as the prediction of the conditions of
optimum separation. The experimental data at this
point were then included in the data set and the ANN
retrained. After repeating this process, a total of nine
experimental points were required to produce final
optimum conditions of 14% (v/v) methanol and 10
mM SDS, which is not the global optimum, but a
local optimum. As this process did not identify the
global optimum, other strategies for selecting points
for retraining the ANN were evaluated.

Fig. 3a shows the second optimisation path. In this
method, the ANN was retrained using points con-
structed in two-level factorial design around the
predicted point of optimum separation conditions

Fig. 3. Optimisation strategies employed to find the optimum
(the center point). Thus, starting with points 1–5, conditions for the separation of seven metal–HEDTC complexes
point 6 is predicted. Creating a two-level factorial using an ANN (2,12,1) coupled with experimental design. (a)
design around this point resulted in point 7 being Using a two-level factorial design around the predicted point when

retraining the ANN. The optimum predicted is at a C of 18%included (other points of the two-level factorial MeOH

(v /v) methanol and 13 mM SDS, with a total of 11 experiments.design are outside the search space). Retraining the
(b) Using a star design created around the predicted point when

ANN, predicted point 8, etc. Repeating this process retraining the ANN. The optimum predicted is 8% (v/v) methanol
until a consistent optimum was found resulted in a and 10 mM SDS, with a total of 13 experiments required to reach
total of 11 experiments to establish the optimum at the optimum.
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18% (v/v) methanol and 13 mM SDS, which again design (making a total of nine experimental points),
was not the global optimum. reduced the average error to ,4%, which is within

A further design, namely constructing a fractional the error of reproducibility of CE.
star design around the point predicted as the best In order to find the optimum separation conditions
conditions for the separation, was then used and the over the experimental space, several small two-level
global optimum was located within 13 experiments factorial designs (size 10 mM by 8%, v/v, methanol)
(Fig. 3b). This was by far the worst case encoun- of five points were used as starting points. ANN
tered, and with all other designs tried, the use of the training with a structure of (2,12,1) was used, and
star design training around the predicted point was star designs created around the predicted point,
able to identify the global optimum using seven to followed by retraining of the ANN was used. Op-
nine experimental points. timum separations conditions of 2% (v/v) methanol

It is important to recognise that in this case, the and 50 mM SDS were typically obtained with eight
ANN structure that was used was (2,12,1) and that experimental points, but as high as 11 were required
training with only five data points is not appropriate. for several starting point combinations.
However our focus was not in modelling the normal-
ised resolution surface accurately, but in using ANN
in conjunction with a suitable experimental design to 5. Conclusions
optimise the separation by picking out general trends
in the data and suggesting a ‘‘better’’ position to The migration behaviour and the overall resolution
conduct the next experiment. of analytes in MEKC can be modelled with ANNs.

A procedure to optimise MEKC separations can be Migration behaviour of individual metal complexes
proposed based upon the above results: first, pre- could be modelled accurately using an ANN with
liminary (screening) experiments are necessary to three or more hidden neurons, but modelling of
identify the region for the values of the factors. The seven metal complexes simultaneously required
experimental design is then selected and the required seven hidden neurons. A new optimisation procedure
experiments undertaken. ANN modelling is used to based on a combination of experimental design and
predict interim values of the parameters under in- ANN was proposed and for a MEKC separation of
vestigation, and experiment(s) are conducted under seven metal–HEDTC complexes and eight metal–
the predicted conditions and a new prediction is CDTA complexes it was demonstrated that the
made. Experimentation is again undertaken at this combined use of a proper experimental design and
point and the process repeated until no significant ANN modelling could successfully reduce the num-
improvement is achieved. A further possibility is to ber of necessary experiments.
construct a smaller experimental design around each The proposed ANN experimental design approach
predicted optimum in order to improve the ability of opens new possibilities for optimising not only
the ANN to locate the global optimum. MEKC but also some other separation methods. It

exhibits the general advantage of ‘‘soft model’’
4.5. Application of ANN experimental design to modelling, i.e., that there is no necessity to formulate
metal–CDTA complexes an explicit mathematical model, without losing any

precision.
The proposed procedure was used to examine The proposed strategy is under further develop-

mobility data for a series of CDTA complexes of ment in both laboratories.
eight metal ions [3]. Preliminary screening experi-
ments limited the experimental space to between 0
and 20% (v/v) methanol and 10–50 mM SDS. A Acknowledgements
two-level factorial design with a center point (requir-
ing five experimental points), and an ANN structure A travel grant for J.H. from the Australian Depart-
of (2,7,8), gave an average error of 15%. Changing ment of Industry, Science and Tourism is gratefully
the design to a two-fold inclusive two-level factorial acknowledged.
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